Axiom of Choice and Continuum Hypothesis – Connections and Differences

Tereza Slabá



We compare two well-known set-theoretical statements, namely the axiom of choice and the continuum hypothesis, with regard to their historical development and formulation, as well as their consequences in mathematics. It is known that both statements are independent from the other axioms of set theory (if they are consistent). The axiom of choice – despite initial controversies – is today almost universally accepted as an axiom. However, the status of the continuum hypothesis is more complex and no agreement has been found so far: both the continuum hypothesis and its negation (often as consequences of stronger statements) decide several mathematical problems differently, but in contrast with the axiom of choice it is not clear which of the two solutions should be the “correct” one (in the sense of an agreement within the community).


axiom of choice; continuum hypothesis; axioms of set theory

Full Text:

PDF (Čeština)


Aigner, Martin, and Günter Ziegler. Proofs from THE BOOK. Berlin: Springer, 1998.

Bernstein, Felix. „Zur theorie der trigonometrischen reihen.“ Sitzungsberichte der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikalische Klasse 60 (1908): 325–38.

Bettazzi, Rodolfo. „Gruppi finiti ed infiniti di enti.“ Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche 31 (1896): 506–12.

Borel, Émile. Leçons sur la théorie des fonctions. Paris: Gauthier-Villars et fils, 1898.

Burali-Forti, Cesare. „Le classi finite.“ Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche 32 (1896): 34–52.

Cantor, Georg. „Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen.“ Journal für die reine und angewandte Mathematik 77 (1874): 258–62.

Cantor, Georg. „Ein Beitrag zur Mannigfaltigkeitslehre.“ Journal für die reine und angewandte Mathematik 84 (1878): 242–58.

Cantor, Georg. „Über unendliche, lineare Punktmannigfaltigkeiten.“ Mathematische Annalen 21 (1883): 545–91.

Cantor, Georg. „Beiträge zur Begrundung der transfiniten Mengenlehre.“ Mathematische Annalen 47 (1895): 481–512.

Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers, New York: Dover, 1915.

Cantor, Georg. Briefe. New York: Springer, 1991.

Cohen, Paul J. „The Independence of the Continuum Hypothesis.“ Proceedings of the National Academy of Sciences of the United States of America 50, no. 6 (1963): 1143–48.

Dedekind, Richard. Was sind und was sollen die Zahlen? Braunschweig: F. Vieweg, 1888.

Eklof, Paul C. „Whitehead’s Problem is Undecidable.“ The American Mathematical Monthly 83 (1976): 775–88.

Erdös, Paul, and Tibor Grünwald. „On Polynomials With Only Real Roots.“ Annals of Mathematics 40 (1939): 537–48.

Feferman, Solomon, and Azriel Lévy. „Independence Results in Set Theory by Cohen’s Method.“ Notices of the American Mathematical Society 10 (1963): 592–93.

Gödel, Kurt. „The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis.“ Proceedings of the National Academy of Sciences, no. 24 (1938): 556–57.

Gödel, Kurt. Filosofické eseje. Praha: Oikoymenh, 1999.

Hausdorff, Felix. „Die Graduierung nach dem Endverlauf.“ Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig 61 (1909): 297–334.

Heine, Eduard. „Die Elemente der Functionenlehre.“ Journal für die reine und angewandte Mathematik 74 (1872): 172–88.

Howard, Paul, and Jean E. Rubin. Consequences of the Axiom of Choice. Providence, RI: American Mathematical Society, 1998.

Jech, Thomas. The Axiom of Choice. Princeton, NJ: North-Holland, 1973.

Jourdain, Philip E. B. „On Transfinite Cardinal Numbers of the Exponential Form.“ Philosophical Magazine 9, no. 49 (1905): 42–56.

Kuratowski, Kazimierz. „Une méthode d’elimination des nombres transfinis des raisonnements mathematiques.“ Fundamenta Mathematicae 3 (1922): 76–108.

Martin, Donald A. „Hilbert’s First Problem: The Continuum Hypothesis.“ Proceeding of Symposia in Pure Matematics 28 (1976): 81–92.

Moore, Gregory H. Zermelo’s Axiom of Choice: Its Origins, Development, and Influence. New York: Springer, 1982.

Mycielski, Jan, and Hugo Steinhaus. „A Mathematical Axiom Contradicting the Axiom of Choice.“ Bulletin de l’Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques 10 (1962): 1–3.

Peano, Giuseppe. „Demonstration de I’integrabilite des equations differentielles ordinaires.“ Mathematische Annalen 37 (1890): 182–228.

Russell, Bertrand. The Principles of Mathematics. Cambrdige: Cambridge University Press, 1903.

Scott, Dana. „Measurable Cardinals and Constructible Sets.“ Bulletin de l’Académie Polonaise des Sciences 9 (1961): 521–24.

Sierpiński, Wacław. „Sur Ie rôle de l’axiome de M. Zermelo dans I’analyse moderne.“ Comptes Rendus Hebdomadaires des Séances de I’Académie des Sciences 163 (1916): 688–91.

Sierpiński, Wacław. Hypothèse Du Continu. Warszawa: Subwencji Funduszu Kultury Narodowej, 1934.

Solovay, Robert M. „A Model of Set Theory in Which Every Set of Reals is Lebesgue Measurable.“ Annals of Mathematics 92 (1970): 1–56.

Vitali, Giuseppe. Sul problema della misura dei Gruppi di punti di una retta. Bologna: Tip. Gamberini e Parmeggiani, 1905.

Whitehead, Alfred N., and Bertrand Russell. Principia Mathematica. Cambridge: Cambridge University Press, 1927.

Zorn, Max. „A Remark on Method in Transfinite Algebra.“ Bulletin of the American Mathematical Society 41 (1935): 667–70.

Copyright (c) 2022 Tereza Slabá

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

TEORIE VĚDY / THEORY OF SCIENCE – journal for interdisciplinary studies of science is published twice a year by the Institute of Philosophy of the Czech Academy of Sciences (Centre for Science, Technology, and Society Studies). ISSN 1210-0250 (Print) ISSN 1804-6347 (Online) MK ČR E 18677 web: /// email: