Development and Interpretation of the Concept of Probability
PDF (Czech)

Keywords

random
probability
principle of indifference
Bertrand's paradox

How to Cite

Development and Interpretation of the Concept of Probability. (2024). Teorie vědy Theory of Science, 46(1), 61-87. https://doi.org/10.46938/tv.2024.613

Abstract

Considerations related to randomness appear relatively late in European history, at the turn of the Middle Ages and the modern era. They initially concern to the chances of winning in various games or situations and later move on to introduce classical and geometric probabilities. From a mathematical point of view, the probability calculus is completed by Kolmogorov’s axiomatic theory. However, many open questions, problems and paradoxes remain in the way probability is perceived and interpreted. The four main directions in the concept of probability (logical, frequentist, subjective and propensity) are closely related to the way of perceiving randomness (epistemological or ontological). Reflections on the evolution of the perception of randomness and the interpretation of probability bring the ability to navigate the basic principles and findings of science and contributes to a deeper understanding of the entire issue.
PDF (Czech)

References

Aerts, Diederik, and Massimiliano Sassoli de Bianchi. „Solving the Hard Problem of Bertrand’s Paradox.“ Journal of Mathematical Physics 55 (2014): 083503. https://doi.org/10.1063/1.4890291.

Anděl, Jiří. Matematika náhody. Praha: Matfyzpress, 2003.

Bernoulli, Jacob. Ars conjectandi. Basel: Thurnisiorum Fratrum, 1713.

Bertrand, Joseph. Calcul des probabilités. Paris: Gauthier–Villars, 1889.

Coufal, Jan. „Alea iacta est aneb půl tisíciletí od vytištění úlohy rytíře de Mére.“ Informační bulletin České statistické společnosti 5, č. 1, 2 (1994): 10–18; 3–10.

Daston, Lorraine. Classical Probability in the Enlightenment. Princeton: Princeton University Press, 1988. https://doi.org/10.1515/9781400844227.

Deakin, Michael. „The Wine/Water Paradox: Background, Provenance and Proposed Resolutions.“ Gazette of the Australian Mathematical Society 33, no. 3 (2006): 200–205.

Drory, Alon. „Failure and Uses of Jaynes’ Principle of Transformation Groups.“ Foundations of Physics 45, no. 4 (2015): 439–60. https://doi.org/10.1007/s10701-015-9876-7.

Dvořák, Jiří a Marie Snětinová. „Bertrandův paradox aneb není náhoda jako náhoda.“ Rozhledy matematicko-fyzikální 94, č. 2 (2019): 12–17.

de Finetti, Bruno. „Probabilism.“ Erkenntnis 31 (1989): 169–223. https://doi.org/10.1007/bf01236563. Původně „Probabilismo,“ Logos 14 (1931): 163–219.

Gamerman, Dani, and Hedibert F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edition. Boca Raton: Chapman & Hall/CRC, 2006. https://doi.org/10.1201/9781482296426.

Gillies, Donald. Philosophical Theories of Probability. London: Routledge, 2000.

Hacking, Ian. The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference. Cambridge: Cambridge University Press, 1975.

Hejný, Milan a kol. Teória vyučovania matematiky 2. Bratislava: SPN, 1989.

Humphreys, Paul. „Why Propensities Cannot be Probabilities.“ The Philosophical Review 94, no. 4 (1985): 557–70. https://doi.org/10.2307/2185246.

Hykšová, Magdaléna. Filosofická pojetí pravděpodobnosti v pracích českých myslitelů. Praha: Matfyzpress, 2011.

Childers, Timothy. Co je pravděpodobnost? Teorie, interpretace, usuzování. Bratislava: Aleph, 2011.

Jaynes, Edwin T. „The Well-Posed Problem.“ Foundations of Physics 4, no. 3 (1973): 477–93. https://doi.org/10.1007/bf00709116.

Johnson, William E. „Probability: The Relations of Proposal to Supposal.“ Mind 41, no. 161 (1932): 1–16. https://doi.org/10.1093/mind/XLI.161.1.

Kalina, Jan a Lubomír Soukup. „Doktrína šancí: 300. výročí první učebnice teorie pravděpodobnosti.“ Informační bulletin České statistické společnosti 29, č. 1 (2018): 1–11.

Keynes, John Maynard. A Treatise on Probability. New York: Macmillan, 1963. Původně London: Macmillan, 1921.

Kolmogorov, Andrej Nikolajevič. Foundations of the Theory of Probability. New York: Chelsea, 1950. Původně Grundbegriffe der Wahrscheinlichkeitstheorie. Berlin: Springer,1933.

Laplace, Pierre Simon. Philosophical Essay on Probabilities. New York: Dover, 1952. Původně Essai philosophique sur les probabilités. Paris: Courcier, 1814.

Mačák, Karel. „Poznámky k formování teorie pravděpodobnosti v XVII. a XVIII. Století.“ In Historie matematiky II. Seminář pro vyučující na vysokých školách, editovali Jindřich Bečvář a Eduard Fuchs, 29–68. Praha: Prometheus, 1997.

Marinoff, Louis. „A Resolution of Bertrand’s Paradox.“ Philosophy of Science 61, no. 1 (1994): 1–24. https://doi.org/10.1086/289777.

Mikkelson, Jeffrey M. „Dissolving the Wine/Water Paradox.“ The British Journal for the Philosophy of Science 55, no. 1 (2004): 137–45. https://doi.org/10.1093/bjps/55.1.137.

Miller, David W. Critical Rationalism. A Restatement and Defence. Chicago: Open Court, 1994.

von Mises, Richard. Probability, Statistics and Truth. London: Allen, Unwin, 1961. Původně Wahrscheinlichkeit, Statistik und Wahrheit. Wien: Springer, 1928. https://doi.org/10.1007/978-3-662-36230-3.

Mošna, František. Pravděpodobnost a náhodné veličiny. Praha: Pedagogická fakulta UK, 2017.

Pinc, Zdeněk. Fragmenty k filosofii výchovy. Praha: Oikoymenh, 2000.

Popper, Karl R. A World of Propensities. Bristol: Thoemmes, 1990.

Ramsey, Frank Plumpton. „Truth and Probability.“ In The Foundations of Mathematics and Other Logical Essays, edited by Richard B. Braithwaite, 156–198. London: Kegan Paul–Trench–Trübner, 1931. Původně 1926.

Rowbottom, Darrell P. „Bertrand’s Paradox Revisited: Why Bertrand’s ,Solutions‘ Are All Inapplicable.“ Philosophia Mathematica 21, no. 1 (2013): 110–14. https://doi.org/10.1093/philmat/nks028.

Saxl, Ivan. „Pravděpodobnost ve středověku.“ Informační bulletin České statistické společnosti 20, č. 2 (2009): 1–9.

Saxl, Ivan a Lucia Ilucová. „Abraham de Moivre.“ In Matematika v proměnách věků V., editovali Martina Bečvářová a Jindřich Bečvář, 6–55. Praha: Matfyzpress, 2007.

Saxl, Ivan. „Filosofické interpretace pravděpodobnosti.“ In Matematika v proměnách času III., editovali Jindřich Bečvář a Eduard Fuchs, 132–55. Praha: Výzkumné centrum pro dějiny vědy, 2004.

Shackel, Nicholas. „Bertrand’s Paradox and the Principle of Indifference.“ Philosophy of Science 74, no. 2 (2007): 150–75. https://doi.org/10.1086/519028.

Stewart, Ian. Hraje bůh kostky? Praha: Argo – Dokořán, 2009.

Van Fraassen, Bas C. Laws and Symmetry. Oxford: Clarendon Press, 1989. https://doi.org/10.1093/0198248601.001.0001.

Vopěnka, Petr. Hádání v hospodě. Praha: Práh, 2013.

Since 2019, TEORIE VĚDY / THEORY OF SCIENCE journal provides open access to its content under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Authors who publish in this journal agree that:

  1. Authors retain copyright and publication rights without restrictions and guarantee the journal the right of first publishing. All published articles are licensed under the Creative Commons Attribution license, which allows others to share this work under condition that its author and first publishing in this journal was acknowledged.
  2. Authors may enter into other agreements for non-exclusive dissemination of work in the version in which it was published in the journal (for example, publishing it in a book), but they have to acknowledge its first publication in this journal.
  3. Authors are allowed and encouraged to make their work available online (for example, on their personal websites, social media accounts, and institutional repositories) as such a practice may lead to productive exchanges of views as well as earlier and higher citations of published work.

There are no author fees, no article processing charges, or submission charges.

The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles and allows readers to use them for any other lawful purpose.

A summary of the open access policy is also available in the Sherpa Romeo database.

Downloads

Download data is not yet available.