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of therModynaMics
abstract: The article presents the 
German philosopher G. W. Leibniz 
as a  key precursor of the First Law of 
Thermodynamics. In this way, Leibniz 
tried to oppose Newton, who seems to 
have completely rejected the First Law 
of Thermodynamics, while at the same 
time remarkably anticipating the Second. 
Based on his polemics not only with 
Newton, from whose Laws of Motion 
thermodynamics originates, and with his 
advocate Samuel Clarke, but also with 
René Descartes, whose conception Leibniz 
partially followed, Leibniz’s reasoning 
turns out to be the most convincing. It 
is certainly no coincidence that the later 
founders of thermodynamics frequently 
acknowledged him.
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leibniz a první termodynamický 
zákon
abstrakt: Článek představuje němec­
kého filosofa G. W. Leibnize jakožto 
klíčového předchůdce prvního termo­
dynamického zákona. Leibniz se totiž 
touto cestou pokoušel oponovat zejména 
Newtonovi, jenž první termodynamický 
zákon patrně zcela odmítal, zatímco 
současně pozoruhodně předjímal druhý. 
Na základě polemiky nejen s Newtonem, 
z  jehož pohybových zákonů přitom 
termodynamika skutečně vychází, resp. 
s  jeho obhájcem Samuelem Clarkem, 
jakož i s René Descartem, na jehož pojetí 
Leibniz částečně navazoval, se však Leib­
nizova argumentace ukáže být vůbec nej­
přesvědčivější. Jistě tudíž není náhodou, 
že se pozdější zakladatelé termodynamiky 
nezřídka hlásili právě k němu.  
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1. introduction

In this article I argue that Leibniz is to be regarded as a legitimate precur-
sor of the First Law of Thermodynamics, rather than Newton, as Einstein 
indicated.1 For although according to Perl “concepts which do not occur in 
developed theories are not in themselves of great significance,”2 the modern 
definition of energy in fact originated no later than in 1802, when Thomas 
Young claimed allegiance to Leibniz’s vis viva concept (i.e., mv2).3 Until then, 
energy had not been associated with fuel in any significant way even in the 
context of thermodynamics itself and the term was rarely used and was 
regarded as mere poeticism due to Newton’s disdain.4

It is no surprise, therefore, that Geikie praised Leibniz’s theory of the 
Earth precisely for anticipating aspects of modern physics5 and that accord-
ing to others Leibniz even espoused the law of conservation of mechanical 
energy as it is formulated today.6 For only the contemporary conception of 
energy makes it possible to quantify cases when mechanical energy is trans-
formed to other forms, as suggested in Leibniz’s Protogaea.

Unlike Descartes, who held that the originally chaotic matter was even-
tually ordered by natural laws,7 Leibniz believed that God created a  fully 
ordered world, whereby this order is merely accidentally transformed in 
the course of history.8 The Protogaea first discloses the Earth flourishing, 

1  Albert Einstein, “Newton’s Mechanik und ihr Einfluß auf die Gestaltung der theoretischen 
Physik,” Die Naturwissenschaften 15 (1927): 274.
2  Margula Perl, “Physics and Metaphysics in Newton, Leibniz, and Clarke,” Journal of the 
History of Ideas 30, no. 4 (1969): 526. Cf. Cara N. Daggett, The Birth of Energy: Fossil Fuels, 
Thermodynamics & the Politics of Work (London: Duke University Press, 2019), 17. 
3  Wayne Saslow, “A History of Thermodynamics: The Missing Manual,” Entropy 22, no. 77 
(2020): 5.
4  Daggett, The Birth of Energy, 3. 
5  Archibald Geikie, The Founders of Geology (New York: The Macmillan Company, 1905), 81. 
6  Eberhard Tiemann, “Lebendige Kraft wird Energie: Leibniz Beitrag zur Kinetik,” 
Unimagazin Leibniz: Auf den Spuren des großen Denkers, no. 3/4 (2006): 44; Ján Pavlík, “Vis 
viva & vis mortua,” E-Logos: Electronic Journal for Philosophy 21, no. 1 (2009): 21, footnote 53. 
See also Marius Stan, “Reflection: Perpetuum Mobiles and Eternity,” in Eternity: A History,  
ed. Yitzhak Melamed (New York: Oxford University Press, 2016), 173.
7  Discourse de la méthode (AT, VI, 42, § 19–23; 43, § 13–16). 
8  See, for example, Letter to Louis Bourguet of 22 March 1714 (GP, 3, 565). See also Claudine 
Cohen and André Wakefield, “Introduction,” in Protogaea: Sive de prima facie telluris et an-
tiquissimae historiae vestigiis in ipsis naturae monumentis dissertatio, eds. Claudine Cohen 
and André Wakefield (Chicago: University of Chicago Press, 2008), XXII or Evaristo Álvarez 
Muñoz, “Del origen del planeta al significado de los fósiles: La geología de Leibniz,” in Leibniz 
y las ciencias, ed. Juan Arana (Madrid: Plaza y Valdes, 2013), 165. Curiously, David R. Oldroyd 
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arranged in a certain way, and then the Earth devastated, with its history 
recorded in fossils and stratigraphic layers. Thus, the Earth from the very 
beginning must have contained all the forces that had the task of ultimately 
transforming it to its present-day form.9 The planet’s contemporary shape 
is thus in the first place a consequence of continual transformations, which 
are of two types: those caused by the planet’s own proper action and those 
caused by the actions of animals. 

Regarding the planet itself, its hot active core enables it to deal with 
all minerals and composed substances as chemists do  in the  laboratory,10 
whereby it is capable not only of composing and decomposing them, but 
also of transporting, re-unifying, or uncovering them. And while the spon-
taneous processes of inorganic matter need to be distinguished from the 
agency of organic animals, which is to various degrees deliberate, the two 
are nonetheless intimately connected.11 In any case, the overall sum of the 
active forces in the universe remains constant, and it is right: “It is extremely 
reasonable that the same force is always conserved in the universe.”12   

Therefore, Leibniz begins his critique of Newton’s assumption that the 
active forces in the universe are naturally declining, which is why they must 
be constantly renewed by God himself, already in the fourth paragraph of 
his first letter to Clarke. Not only according to Newton “motions […] are 
constantly decreasing” in the world13 [rejection of the First Law of Thermo-
dynamics], but there is an “increase in irregularities […] which will probably 
grow with time”14 [acceptance of the Second Law of Thermodynamics].15 
Leibniz’s point of departure here probably was the twenty-third question of 
Newton’s Optics, as correctly identified by Clarke in a note on Leibniz’s first 

[Earth Cycles: A Historical Perspective (Westport: Greenwood Press, 2006), 31] attributes to 
Leibniz, on the contrary, a Cartesian conception (i.e., the assumption of original chaos).
9  Cohen and Wakefield, “Introduction,” XXII.
10  See P (26–27, § 9).
11  Miguel Escribano-Cabeza, “Chemistry and Dynamics in the Thought of G. W. Leibniz I,” 
Foundations of Chemistry 23, no. 2 (2021): 149. 
12  “Il es raisonnable que la même force se conserve tousjours dans l’univers” (Discours de 
Métaphysique; GP, IV, 442, § 17; AG, 49, § 17).
13  “Motus […] perpetuo decrescunt” (Optice; O, 343, quest. 23).  
14  “Irregularitatibus […], quaeq; verisimile est fore ut longinquitate temporis majores usq; 
evadant” (Optice; O, 345f., quest. 23). 
15  Due to the concept of verisimilitude, the claim by Ilya Prigogine and Isabelle Stengers 
[Order out of Chaos: Man’s New Dialogue with Nature (New York: Bentam Books, 1984), 124] 
that Boltzmann, not Newton, who first expressed the Second Law of Thermodynamics on the 
basis of probability must therefore be rejected.
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letter.16 There Newton wrote that “motion can arise and cease [rejection of 
the First Law of Thermodynamics], but due to the cohesion of liquid bodies, 
the friction of their parts and the weakness of the flexible force in solid bod-
ies there is always a much higher tendency in all parts for motion to cease 
than to arise [acceptance of the Second Law of Thermodynamics].”17

Even with his fourth answer, Clarke still assures us that “Sir Isaac 
Newton has given a Mathematical Instance (page 341 of the Latin Edition 
of his Optics) wherein Motion is continually diminishing and increasing in 
Quantity, without any communication thereof to other Bodies.”18 The first 
two of the indicated reasons, i.e., the cohesion of liquids and viscosity, are 
developed by Newton in even more detail: “Vortices of oil, water, or some 
other, even more liquid substance could certainly maintain their motion 
longer – without the matter being clear of all cohesion, while its inner 
parts would not be subject to friction or transmission of motion, which 
indeed cannot be secured – which is why it will happen that motion is 
decreasing constantly.”19 

To the three reasons listed by Newton, Clarke originally added a fourth 
one, inertia,20 but eventually came to take it back.21 For perfect illustration, 
he did not omit to contribute an example of his own, since “The present 
Frame of the Solar System (for instance) according to the present Laws of 
Motion will in time fall into Confusion [a consequence of the Second Law 
of Thermodynamics]; and perhaps, after That, will be amended or put into 
a  new Form.”22 And, perhaps to be certain to disperse all doubt, he even 
compared it to the passing character of the human body: “Tis in the Frame 
of the World, as in the Frame of Mans Body: The Wisdom of God does not 
consist, in making the present Frame of Either of them Eternal, but to last 

16  Jan Palkoska, “Úvod,” in Gottfried W. Leibniz – Samuel Clarke: Korespondence, ed. Jan 
Palkoska (Prague: Oikoymenh, 2020), 43.
17  “Motum & nasci posse & perire. Verum, per tenacitatem corporum fluidorum, partiumq; 
suarum attritum, visq; elasticæ in corporibus solidis imbecillitatem; multo magis in eam 
certem partem vergit natura rerum, ut pereat Motus, quam ut nascatur” (Optice; O, 341,  
quest. 23).
18  LC (C.4.38). 
19  “Vortices ex Oleo, vel Aqua, vel alia aliqua materia adhuc magis f luida, possent quidem 
diutius Motum suum retinere; verum, nisi materia illa omnis plane tenacitatis expers esset, 
interq; partes ejus neq; Attritus esset ullus, neq; communicatio Motus, (quod fingi sane non 
potest;) omnino futurum esset, ut Motus perpetuo decresceret” (Optice; O, 343, quest. 23). 
20  LC (C.4.39).
21  LC (C.5.99). 
22  LC (C.2.8).
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so long as be thought fit.”23 Little does it matter that the only one who could 
ever re-evaluate the fitness of the permanence of the status quo is only God 
himself (i.e., it should rather say as He thought fit, not as be thought fit) and 
that this was his purpose from the very beginning.24 At least the amount of 
motion in the world is certainly not constant,25 and is furthermore subject 
to dissipation. “Since those various motions that can be observed in the uni-
verse are constantly decreasing,” Newton concludes, “it is entirely necessary 
to resort to some active principles, if those motions are to be conserved and 
grow again.”26

2. energy conservation

It is entirely expectable that Leibniz categorically rejected both points of 
departure. In the first place, he claimed that an identical quantity of [living] 
force (vis viva) is always conserved in the universe,27 or that there is “the 
same quantity of total and absolute force, or of action […], the same quantity 
of respective force, or of reaction; and finally, the same quantity of directive 
force.”28 Thus, living force in his conception anticipates the modern con-
ception of energy [acceptance of the First Law of Thermodynamics], since 
“according to my opinion, the same force and vigour remains always in the 
world, and only passes from one substance to another, agreeably to the laws 
of nature, and the beautiful pre-determined order.”29 To not only postulate 
his claim, but also support it, and to refute Newton’s arguments thereby, he 
was obliged to account not only for Newton’s laws of motion, but also for his 
principle of gravitation30 (or rather its germ in the form of Galileo’s law of 

23  LC (C.2.8).
24  LC (C.2.9). 
25  See also the following remark about “the Active Forces, which are in the Universe, dimin-
ishing” (LC; C.3.13f.).
26  “Quoniam igitur varii illi Motus, qui in Mundo conspiciuntur, perpetuo decrescunt uni-
versi; necesse est prorsus, quo ii conservari  recrescere possint, ut ad actuosa aliqua principia 
recurramus” (Optice; O, 343, quest. 23). 
27  Discours de Métaphysique (A, VI, 4, 1556, § 18/12f.; GP, IV, 442, § 17; AG, 49, § 17; WFPT, 
69, § 17; S, 72, § 17). 
28  “La même quantité de la force totale et absolue, ou de l’action; la même quantité de la force 
respective, ou de la reaction; la même quantité enfin de la force directive” (Principes de la 
nature et de la grâce; GP, VI, 603, § 11; AG, 210f., § 11).
29  “Selon mon sentiment, la même force et vigueur y subsiste tousjours, et passe seulement de 
matiere en matiere, suivant les lois de la nature, et le bel ordre preétabli” (LC, L.1.4).
30  Within Newtonian mechanics the Laws of Motion (which only involve linear motion) are 
fully independent of the law of gravitation (i.e., of the curvilinear component of actual mo-
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free fall)31 the universality of which was yet to be proven. And precisely to 
this purpose Leibniz used the then accepted32 Torricelli’s principle that two 
interconnected heavy bodies cannot move on their own due to gravitational 
force without a drop of their common centre of gravitation.33

Thus, according to Leibniz, in mechanics it holds that “the struggling of 
many heavy bodies with one another finally gives rise to a motion through 
which there results the greatest descent, taken as a whole. For […] all heavy 
things strive with equal right to descend in proportion to their heaviness 
and […] the one case results in the motion which contains as much descent 
of heavy things as is possible.”34 As Palkoska states, here Leibniz was prob-
ably thinking of the so-called catenary, or chain-curve, as solved after 
Johannes Bernoulli by Leibniz and Huygens.35 In theory, based on Galilean 
relativity, bodies could still maintain motion across an equipotential plane, 
but on the assumption that the mutual position of two points can never be 
perfectly horizontal or perfectly vertical, as Bristol had claimed,36 will the 

tions). Thus, while Newton’s three laws of motion can plausibly be regarded as a generalization 
of Cartesian mechanics – since in both it is assumed that all motion is naturally rectilin-
ear – his gravitation theory stands apart to such an extent that it comprises an accelerated 
curvilinear component that cannot be reduced to uniform rectilinear motion [Terry Bristol, 
“Reconsidering the Foundations of Thermodynamics from an Engineering Perspective,” 
Preprints (2018): 10; Carolyn Iltys, “The Decline of Cartesianism in Mechanics,” Isis 64,  
no. 3 (1973): 370].
31  François Duchesneau, “Leibniz’s Theoretical Shift in the Phoranomus and Dynamica de 
Potentia,” Perspectives on Science 6, no. 1/2 (1998): 97; Richard S. Westfall, Force in Newton’s 
Physics: The Science of Dynamics in the Seventeenth Century (London: Macdonald, 1971), 
4. Although the discovery of mixed motion, i.e., the simultaneous but independent actions 
of two separate motions (inertial and gravitational) was one of Galileo’s key achievements, 
it remained largely unknown to his contemporaries since there was hardly any publication 
to inform about it [Wolfgang Lefèvre, Minerva Meets Vulcan: Scientific and Technological 
Literature: 1450–1750 (Cham: Springer, 2021), 88].
32  Gideon Freudenthal, “Perpetuum Mobile, The Leibniz–Papin Controversy,” Studies in 
History and Philosophy of Science 33, no. 3 (2002): 584. See, among others, Letter to Leibniz by 
Unknown Author (I, 81).  
33  “Duo gravia simul coniuncta ex se moveri non posse, nisi centrum commune gravitatis 
ipsorum descendat” (T, 99). 
34  “Communi pluribus corporibus gravibus se luctantibus talis demum oritur motus, per 
quem fit maximus descensus in summa. […] Enim […] omnia pondera pari jure ad descend-
endum tendunt pro ratione gravitatis, et ut hic prodit motus, quo continetur quam maximus 
gravium descensus” (De rerum originatione radicali; GP, VII, 304; AG, 151; PA, 17).
35  Palkoska in PA (17, § 108); Stanislav Michal, Perpetuum mobile včera a dnes (Prague: SNTS, 
1981), 109.  
36  Bristol, “Reconsidering the Foundations of Thermodynamics,” 8.
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path between them always be the result of a certain type of combination of 
the two components.37

While for Descartes the shortest connection between two points would 
in all circumstances be a  straight line, after  Leibniz’s silent introduction 
of Newtonian gravitation, motion is composed not only of the horizontal 
component with constant speed but also of the vertical component with 
gravitational acceleration. Although Bristol gives no further reasons for his 
assumption, Leibniz’s doubts regarding the validity of the Euclidean defi-
nition of the line segment as the shortest connection between two points38 
were also noted by Risi.39 By adding that if the gravitational centre of the 
system drops, it thereby acquires sufficient force to be elevated to its original 
height, Leibniz completed Torricelli’s principle.40 

3. Quantity of Motion conservation

At first glance, Leibniz’s procedure may seem unnecessarily complicated: it 
would have sufficed to appeal to Descartes’s authority. Already Descartes in 
his Principles of Philosophy attributed to God the function of maintaining an 
identical quantity of motion and rest across the universe41 and, like Leibniz, 
regarded this as an evident consequence of God’s perfection, his unchan-
geability or constancy.42 Leibniz, on the other hand, tried to prove, based 
on the universal validity of gravitation, that even Descartes’s principle of 
conservation of motion is ultimately no less misguided than the Newtonian 
belief in its decrease, if the measure of its quantity is the product of mass and 
velocity (mv), or momentum, i.e., the quantity of motion.43

37  For example, Leibniz’s silence regarding the uniform horizontal effect in his reply to Papin 
probably indicates his doubts about using this kind of motion to ground gravitational accel-
eration [Alberto G. Ranea, “The Apriori Method and the Actio Concept Revised: Dynamics 
and Metaphysics in an Unpublished Controversy between Leibniz and Denis Papin,” Studia 
Leibniziana XXI, no. 1 (1989): 47].
38  See In Euclidis πρῶτα (GM, V, 188, § 2f.; LH, 35, 1, 5, fol. 18r).
39  In Euclidis πρῶτα (GM, V, 188, § VII/2f.). 
40  Freudenthal, “Perpetuum Mobile, The Leibniz–Papin Controversy,” 585. 
41  Principia philosophiae (AT, VIII, 61, § 10–24). 
42  Ibid. Cf.: “But we have come to understand that even nature while conserving the absolute 
force does not forget about its constancy and perfection.” [“Sed a nobis deprehensum est, ne in 
absoluta quidem vi conservanda naturam constantiae suae atque perfectionis dememinisse” 
(Untitled; GP, IV, 398)].  
43  Untitled (GP, IV, 398).
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Since in the five common machines velocity and mass mutually replace 
each other, it is quite understandable that many mathematicians decided 
to deduce motive effects from the momentum, or the product of the body’s 
mass and its velocity.44 If both the law of action and reaction and the law of 
mechanical energy conservation in general can be applied to gravitational 
interaction, why couldn’t it be applied in connection with the law of momen-
tum conservation?45 According to Leibniz, this is a deeply rooted assump-
tion that motion with its velocity is a real, absolute entity, and that therefore 
a change in its quantity ought to be due to creation or annihilation, which are 
reserved to God.46 It is therefore no wonder that by publishing his critique 
of Cartesian mechanics, Brevis demonstratio, in 1686 he initiated a debate 
that occupied the attention of most European natural philosophers for the 
next fifty years.47 In the same year, he developed a similar topic within his 
Discourse on Metaphysics and Specimen dynamicum, and of course also in 
his later correspondence with Clarke.

The criticism was entirely constructive, since he proposed replacing the 
law of momentum conservation by the law of force conservation: “In wholes 
whose parts cannot exist at the same time [i.e., in those in motion] it must be 
of even less wonder that their quantity is not conserved as identical. But the 
impulsive force itself (or the status of bodies of which the change of place is 
born) is something absolute and subsistent.”48 When two bodies of the same 
mass fall  with identical initial velocity, their total momentum is exactly 
twice the momentum of one such body (of the same velocity):

m1 = m2 = 5 kg; m = m1 + m2 = 10 kg; v0 = 1 
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mass fall with identical initial velocity, their total momentum is exactly twice 
the momentum of one such body (of the same velocity): 

 
m1 = m2 = 5 kg; m = m1 + m2 = 10 kg; v0 = 1 

m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 = 2p1 

p1 = m1v = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv = 10[1 + (10*2)] = 210 kg
m
s , 

yet this does not hold for an identical body and twice the original velocity:49 
 

m = 5 kg; v0(1) = 1 
m
s ; v0(2) = 2*v0(1) = 2 

m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 ≠ 2p1 

p1 = mv(1) = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv(2) = 5[2 + (10*2)] = 110 kg
m
s . 

And while the potential energy, and therefore the work done in lifting a 
one-pound body to the height of four feet is actually equal to the potential 
energy of a four-pound body at the height of one foot (I replaced the pounds 
and feet with kilograms and metres for simplicity’s sake):  

 
m1 = 1 kg; h1 = 4 m; Ep = mgh = 1*10*4 = 40 J  

m2 = 4 kg; h2 = 1 m; Ep = mgh = 4*10*1 = 40 J;  

and their kinetic energy is also quantitatively identical: 
 
v = √(2gh)50 

Ek1 = ½ m1v2 = ½*1[√(2*10*4)]2 ≐ 40 J  

Ek2 = ½ m2v2 = ½*4[√(2*10*1)]2 ≐ 40 J,  

their momentum is not:51 
 

49 De causa gravitatis (GM, VI, 202f., § 12).  
50 According to Pavlík, “Vis viva & vis mortua,” 22, the formula for calculating velocity v = √(2gh) is 
implied by Galilei’s formula for calculating trajectory [h = ½gt2]. It is not evident to me how the formula came 
to include the quantitative variable g, as this is already contained in velocity itself. The author’s procedure 
probably was that into the formula h = ½ gt2 he first replaced the product of acceleration and time with velocity 
(since v = gt → h = ½v2) and then deduced the correct formula v = √(2s) from it. Since the quantitative variable 
g is equally inappropriate in both bodies, this error does not affect the difference in their momentum at all.   
51 Discours de Métaphysique (A, VI, 4, 1556–1558, § 17; GP, IV, 442–444, § 17; AG, 49–51, § 17; WFPT, 69–
71, § 17; S, 72–74, § 17). 
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s ; v = v0 + (at) → p2 = 2p1 

p1 = m1v = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv = 10[1 + (10*2)] = 210 kg
m
s , 

yet this does not hold for an identical body and twice the original velocity:49 
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And while the potential energy, and therefore the work done in lifting a 
one-pound body to the height of four feet is actually equal to the potential 
energy of a four-pound body at the height of one foot (I replaced the pounds 
and feet with kilograms and metres for simplicity’s sake):  
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to include the quantitative variable g, as this is already contained in velocity itself. The author’s procedure 
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(since v = gt → h = ½v2) and then deduced the correct formula v = √(2s) from it. Since the quantitative variable 
g is equally inappropriate in both bodies, this error does not affect the difference in their momentum at all.   
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p2 = mv(2) = 5[2 + (10×2)] = 110 kg
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.

And while the potential energy, and therefore the work done in lifting 
a one-pound body to the height of four feet is actually equal to the potential 
energy of a four-pound body at the height of one foot (I replaced the pounds 
and feet with kilograms and metres for simplicity’s sake): 

m1 = 1 kg; h1 = 4 m; Ep = mgh = 1×10×4 = 40 J 

m2 = 4 kg; h2 = 1 m; Ep = mgh = 4×10×1 = 40 J; 

and their kinetic energy is also quantitatively identical:

v = √(2gh)50

Ek1 = ½ m1v2 = ½×1[√(2×10×4)]2 ≐ 40 J 

Ek2 = ½ m2v2 = ½×4[√(2×10×1)]2 ≐ 40 J, 

their momentum is not:51

p1 = m1v1 = 1[√(2×10×4)] ≐ 9 kg
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p2 = m1v2 = 4[√(2×10×1)] ≐ 18 kg

Kateřina Lochmanová 

 
 
 

8 

mass fall with identical initial velocity, their total momentum is exactly twice 
the momentum of one such body (of the same velocity): 

 
m1 = m2 = 5 kg; m = m1 + m2 = 10 kg; v0 = 1 

m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 = 2p1 

p1 = m1v = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv = 10[1 + (10*2)] = 210 kg
m
s , 

yet this does not hold for an identical body and twice the original velocity:49 
 

m = 5 kg; v0(1) = 1 
m
s ; v0(2) = 2*v0(1) = 2 

m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 ≠ 2p1 

p1 = mv(1) = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv(2) = 5[2 + (10*2)] = 110 kg
m
s . 

And while the potential energy, and therefore the work done in lifting a 
one-pound body to the height of four feet is actually equal to the potential 
energy of a four-pound body at the height of one foot (I replaced the pounds 
and feet with kilograms and metres for simplicity’s sake):  

 
m1 = 1 kg; h1 = 4 m; Ep = mgh = 1*10*4 = 40 J  

m2 = 4 kg; h2 = 1 m; Ep = mgh = 4*10*1 = 40 J;  

and their kinetic energy is also quantitatively identical: 
 
v = √(2gh)50 

Ek1 = ½ m1v2 = ½*1[√(2*10*4)]2 ≐ 40 J  

Ek2 = ½ m2v2 = ½*4[√(2*10*1)]2 ≐ 40 J,  

their momentum is not:51 
 

49 De causa gravitatis (GM, VI, 202f., § 12).  
50 According to Pavlík, “Vis viva & vis mortua,” 22, the formula for calculating velocity v = √(2gh) is 
implied by Galilei’s formula for calculating trajectory [h = ½gt2]. It is not evident to me how the formula came 
to include the quantitative variable g, as this is already contained in velocity itself. The author’s procedure 
probably was that into the formula h = ½ gt2 he first replaced the product of acceleration and time with velocity 
(since v = gt → h = ½v2) and then deduced the correct formula v = √(2s) from it. Since the quantitative variable 
g is equally inappropriate in both bodies, this error does not affect the difference in their momentum at all.   
51 Discours de Métaphysique (A, VI, 4, 1556–1558, § 17; GP, IV, 442–444, § 17; AG, 49–51, § 17; WFPT, 69–
71, § 17; S, 72–74, § 17). 

Kateřina Lochmanová 

 
 
 

8 

mass fall with identical initial velocity, their total momentum is exactly twice 
the momentum of one such body (of the same velocity): 

 
m1 = m2 = 5 kg; m = m1 + m2 = 10 kg; v0 = 1 

m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 = 2p1 

p1 = m1v = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv = 10[1 + (10*2)] = 210 kg
m
s , 

yet this does not hold for an identical body and twice the original velocity:49 
 

m = 5 kg; v0(1) = 1 
m
s ; v0(2) = 2*v0(1) = 2 

m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 ≠ 2p1 

p1 = mv(1) = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv(2) = 5[2 + (10*2)] = 110 kg
m
s . 

And while the potential energy, and therefore the work done in lifting a 
one-pound body to the height of four feet is actually equal to the potential 
energy of a four-pound body at the height of one foot (I replaced the pounds 
and feet with kilograms and metres for simplicity’s sake):  

 
m1 = 1 kg; h1 = 4 m; Ep = mgh = 1*10*4 = 40 J  

m2 = 4 kg; h2 = 1 m; Ep = mgh = 4*10*1 = 40 J;  

and their kinetic energy is also quantitatively identical: 
 
v = √(2gh)50 

Ek1 = ½ m1v2 = ½*1[√(2*10*4)]2 ≐ 40 J  

Ek2 = ½ m2v2 = ½*4[√(2*10*1)]2 ≐ 40 J,  

their momentum is not:51 
 

49 De causa gravitatis (GM, VI, 202f., § 12).  
50 According to Pavlík, “Vis viva & vis mortua,” 22, the formula for calculating velocity v = √(2gh) is 
implied by Galilei’s formula for calculating trajectory [h = ½gt2]. It is not evident to me how the formula came 
to include the quantitative variable g, as this is already contained in velocity itself. The author’s procedure 
probably was that into the formula h = ½ gt2 he first replaced the product of acceleration and time with velocity 
(since v = gt → h = ½v2) and then deduced the correct formula v = √(2s) from it. Since the quantitative variable 
g is equally inappropriate in both bodies, this error does not affect the difference in their momentum at all.   
51 Discours de Métaphysique (A, VI, 4, 1556–1558, § 17; GP, IV, 442–444, § 17; AG, 49–51, § 17; WFPT, 69–
71, § 17; S, 72–74, § 17). 
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m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 = 2p1 

p1 = m1v = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv = 10[1 + (10*2)] = 210 kg
m
s , 

yet this does not hold for an identical body and twice the original velocity:49 
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m
s ; t = 2 s; a = 10 

m
s ; v = v0 + (at) → p2 ≠ 2p1 

p1 = mv(1) = 5[1 + (10*2)] = 105 kg
m
s  

p2 = mv(2) = 5[2 + (10*2)] = 110 kg
m
s . 

And while the potential energy, and therefore the work done in lifting a 
one-pound body to the height of four feet is actually equal to the potential 
energy of a four-pound body at the height of one foot (I replaced the pounds 
and feet with kilograms and metres for simplicity’s sake):  

 
m1 = 1 kg; h1 = 4 m; Ep = mgh = 1*10*4 = 40 J  

m2 = 4 kg; h2 = 1 m; Ep = mgh = 4*10*1 = 40 J;  

and their kinetic energy is also quantitatively identical: 
 
v = √(2gh)50 

Ek1 = ½ m1v2 = ½*1[√(2*10*4)]2 ≐ 40 J  

Ek2 = ½ m2v2 = ½*4[√(2*10*1)]2 ≐ 40 J,  

their momentum is not:51 
 

49 De causa gravitatis (GM, VI, 202f., § 12).  
50 According to Pavlík, “Vis viva & vis mortua,” 22, the formula for calculating velocity v = √(2gh) is 
implied by Galilei’s formula for calculating trajectory [h = ½gt2]. It is not evident to me how the formula came 
to include the quantitative variable g, as this is already contained in velocity itself. The author’s procedure 
probably was that into the formula h = ½ gt2 he first replaced the product of acceleration and time with velocity 
(since v = gt → h = ½v2) and then deduced the correct formula v = √(2s) from it. Since the quantitative variable 
g is equally inappropriate in both bodies, this error does not affect the difference in their momentum at all.   
51 Discours de Métaphysique (A, VI, 4, 1556–1558, § 17; GP, IV, 442–444, § 17; AG, 49–51, § 17; WFPT, 69–
71, § 17; S, 72–74, § 17). 

.

49  De causa gravitatis (GM, VI, 202f., § 12). 
50  According to Pavlík, “Vis viva & vis mortua,” 22, the formula for calculating velocity  
[v = √(2gh)] is implied by Galilei’s formula for calculating trajectory [h = ½gt2]. It is not evident 
to me how the formula came to include the quantitative variable g, as this is already contained 
in velocity itself. The author’s procedure probably was that into the formula h = ½ gt2 he first 
replaced the product of acceleration and time with velocity (since v = gt → h = ½v2) and then 
deduced the correct formula v = √(2s) from it. Since the quantitative variable g is equally inap-
propriate in both bodies, this error does not affect the difference in their momentum at all. 
51  Discours de Métaphysique (A, VI, 4, 1556–1558, § 17; GP, IV, 442–444, § 17; AG, 49–51, § 17; 
WFPT, 69–71, § 17; S, 72–74, § 17).
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Therefore, given that the momentum (mv) underestimates the influence of 
velocity in favour of mass, it should be compensated by squaring the velocity, 
i.e., using the mv2 measure instead.   

The possibility to measure the causal effects of the force by work was 
acknowledged also by Descartes.52 He also stated that the same force that 
lifts a weight to a certain height can lift a double weight to half the height.53 
However, he did not reach  Leibniz’s observation that the two cases differ 
principally with respect to momentum. Leibniz, on the contrary, insisted 
that the proof he presented is quite primitive and that Descartes’s error in 
this respect is a consequence of his overt trust in his own thought that had 
not ripened sufficiently.54

The concept of force had been regarded as problematic for a long time 
and together with it Descartes’s conception was convincingly contested.55 
As Leibniz did not hesitate to point out, “when two mathematicians, who 
are clearly among the most talented, fought with me about this matter, in 
part through letters, in part in public, one came over entirely into my camp, 
and the other came to the point of abandoning all his objections after much 
careful airing and candidly confessed that he did not yet have a response 
to one of my arguments.”56 It thus seems likely that Newton and Clarke 
asserted to Leibniz’s view. Since based on Newton’s Second Law of Motion, 
to attain a double velocity a double force is required57 and kinetic energy 
rises with the square of velocity, it is evident that a quadruple energy would 
be required.58 

52  Jip van Besouw, “The Wedge and the Vis Viva Controversy: How Concepts of Force 
Influenced the Practice of Early Eighteenth-Century Mechanics,” Archive for History of Exact 
Sciences 71 (2017): 123.
53  Traité de la mécanique (DO, V, 435f.).
54  Brevis demonstratio (GM, VI, 119).
55  Van Besouw, “The Wedge and the Vis Viva Controversy,” 111. Cf.  the same assertion al-
ready by Gabrielle E. du Châtelet. Institutions de Physique (Paris: Prault, 1740), 6.
56  “Eaque de re cum duo Mathematici ingenio facile inter primos mecum partim per literas 
partim publice contulissent, alter penitus in castra mea transiit, alter eo devenit, ut objec-
tiones suas omnes post et accuratam ventilationem desereret, et ad meam quandam demon-
strationem nondum sibi multam responsionem suppetere candide fateretur” (De ipsa natura; 
GP, IV, 506, § 4; AG, 157, § 4). According to Palkoska (in PA, 56), Leibniz is probably thinking 
of Johannes Bernoulli and Christiaan Huygens; according to Roger Ariew and Daniel Garber 
[“On Nature Itself,” in Philosophical Essays, eds. Roger Ariew and Daniel Garber (Cambridge: 
Hackett Publishing Company, 1989), 157, footnote 221] it is Bernoulli and Malebranche. See 
also Essay de dynamique (GM, VI, 217).  
57  Theodicée (GP, VI, 120, § 30).
58  See Pavlík, “Vis viva & vis mortua,” 22. 
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4. uniformity of gravitation

Newton himself approached Leibniz’s conception of force especially in pro-
positions 39–41 of his Principia, but he never acknowledged it explicitly.59 
Instead of it, he distanced himself from the matter60 and Clarke, on Newton’s 
example, preferred to attack another of Leibniz’s alleged tacit assumptions 
– that gravitation ought not to have a uniform effect (g ≠ const.) – which 
provided him with a suitable pretext for inclining to Descartes.61 Apparently, 
the terms non/uniform gravitation [or more precisely: non/uniform gravita-
tional field] already at that time signified precisely the non/dependence of 
gravitational force on the square of the distance from its point of application, 
as testified by a  contemporary source of unknown authorship: “whether 
mass is conceived popularly as uniform and consisting of parallel directions, 
or as if the directions aimed at the centre and gravitations varied according 
to the distances from the centre.”62 A body, or a “heavy point […]  falling 
with a uniformly accelerated absolute motion” which “compresses the same 
curve in its individual points with the force of a body of uniform mass”63 is 
what we still associate with uniform gravitation today.

However, the claim (approved by Descartes) that the fall of a one-pound 
body from a height of four feet ought to generate the same effect as the fall 
of a  four-pound body from a  height of one foot seems to contradict the 
Cartesian theory of uniform gravitation. “At first glance it is clear,” Michal 
claims, “that a body falling from a height of four feet falls to the ground 
faster than when it falls from a height of one foot.“64 If gravitation is to be 
uniform according to Descartes, and therefore it must impress the same 
amount of impulsive force into the falling body within a time (g = const.), 
then the impulsive force of the body is proportional to its velocity, not to 

59  Van Besouw, “The Wedge and the Vis Viva Controversy,” 138, footnote 90.
60  John Mackie, Life of Godrey William von Leibnitz (Boston: Gould, Kendall & Lincoln, 1845), 
99f.; Carolyn Iltys, “The Leibnizian-Newtonian Debates: Natural Philosophy and Social 
Psychology,” British Journal for the History of Science 6, no. 24 (1973): 373; Van Besouw, “The 
Wedge and the Vis Viva Controversy,” 111.
61  Papineau, “The Vis viva Controversy: Do Meanings Matter?,” 133.
62  “Sive gravitas vulgari modo concipiatur ut sit uniformis, et constet directionibus parallelis; 
sive directiones tendant ad centrum, et gravitationes varient pro distantia a centro” (LH, 35, 
10, 15, fol. 2v, § 1; LO, 307f.).
63  “Problema etiam ab hoc solutum alia ratione solvit; nempe curvae ejus conditionis, ut in ea 
descendens grave punctum motu naturaliter accelerato eandem curvam in singulis punctis 
premat vi ubique aequali ponderi corporis absolute” (LH, 35, 10, 15, fol. 2r, § 2; LO, 309).
64  “I  na  první pohled je přece jasné, že těleso padající z  výšky čtyř loktů dopadne na  zem 
rychleji, než padá-li z výšky jednoho lokte.” (Michal, Perpetuum mobile včera a dnes, 107).
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the square of its velocity.65 As Clarke had not missed,66 the same view “of 
those that can overcome the same number of gravitational impulses”67 was 
verbally proclaimed also by Leibniz. The assumption of uniform gravita-
tion was even part of Leibniz’s own argument explicitly formulated “against 
the Cartesians.”68

Not only “Galilei assumed in heavy [bodies] a  motion which is 
equally accelerated in equal times, it has also been proven with reasons 
and experiments,”69 i.e., with those experiments that Desaguliers accuses 
Leibniz of ignoring.70 As Clarke correctly noted, Galilei’s “propositions are 
allowed by all mathematicians, not excepting Mr. Leibnitz himself.”71 While 
the path (s = ½gt2), and therefore the required energy across the uniform 
gravitational field really grow/decrease with the square of time, this is not 
the case with gravitational acceleration (g = const.). “Therefore […] if the 
heavy body were at rest, as at the beginning, with equal times, as in the 
case of impressed impact, to times correspond forces, not spaces of rising or 
falling, as I claimed before.”72 

As verified by Koyré and Cohen, the passages where Clarke preferred 
to advocate uniform gravitation for these reasons were written for him by 
Newton – who even adjusted his own Principia to it.73 Once Newton became 
aware that, strictly speaking, his laws of motion do not imply that gravitation 
ought to produce constant acceleration, he proceeded to address this defect. 
So the beginning of the Scholio to the laws of motion in the third edition of 
the Principia assures us that uniform gravitation, acting on the falling body 
in the same way, compresses the body in equal time intervals with the same 

65  Papineau, “The Vis viva Controversy: Do Meanings Matter?,” 133. 
66  LC (C.5, footnote on § 93–95). 
67  “Quae equalem numerum impressionum gravitatis vincere possunt” (De legibus naturae; 
GM, VI, 209).
68  “Meo argumento […] contra Cartesianos prolato” (De causa gravitatis; GM, VI, 195).
69  “Galilaeus […] supposuit […] in gravibus motum aequalibus temporibus aequaliter accel-
eratum, sed etiam rationibus atque experimentis confirmare nisus est” (ibid.).
70  John Theophilus Desaguliers, “An Account of Some Experiments Made to Prove That the 
Force of Moving Bodies Is Proportionable to Their Velocities,” Philosophical Transactions  
32 (1723): 169f.
71  LC (C.5, footnote on § 93–95). 
72  “Nempe […] si grave quiesceret, ut ab initio, semper aequalibus temporibus tantundem 
ictus imprimé, adeoque vires esse ut tempora, non ut spatia ascensuum vel descensuum, que-
madmodum ego quidem existimaveram” (De causa gravitatis; GM, VI, 195).
73  Alexandre Koyré and Bernard Cohen, “Newton & The Leibniz-Clarke Correspondence: 
With Notes on Newton, Conti, & Des Maizeaux,” Archives Internationales d’Histoire des 
Sciences 15, no. 58/59 (1962): 118f., 121. 
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forces, which is why it produces the same velocities and in the entire time 
compresses with the entire force, whereby it gives rise to the entire velocity 
proportional to time.74 Unfortunately, as Dijkterhuis notes,75 here Newton 
used the term impressed force in a sense that is very different from the one 
he attributes to it by Definition IV. In the case of Definition IV it was a force 
acting on the body from the outside, whereby it was explicitly stated that the 
force does not remain in the body. Furthermore, in the eighth definition he 
omitted to leave out the original opposite claim that although gravitation 
manifests itself as uniform when close to the Earth’s surface, “weight in one 
and the same body is greater near the earth and less out in the heavens.”76

If Clarke noted the inconsistency, he could not find fault with Newton 
for it, so he was obliged to forcibly attribute it to Leibniz. It was commonly 
accepted at the time77 that, strictly speaking, gravitation ought not to be 
regarded as uniform, so it was not difficult to find it, among others, in 
the Leibniz-inspired Jacob Hermann. For, as Desaguliers states, Hermann 
and others followed and defended Leibniz’s opinion accurately, so that any 
answer for him was also answer for them.78 However, de facto Clarke was 
criticizing not Leibniz himself, but merely Hermann, who: 

In his Phoronomia […] represents that this is founded upon a false supposition, 
that bodies thrown upwards receive from the gravity which resists them, an 
equal number of impulses in equal times [Clarke’s view]. Which is as much as 
to say, that gravity is not uniform [Hermann’s view]. […] I suppose, he means 
that the swifter the motion of bodies is upwards, the more numerous are the 
impulses; because the bodies meet the (imaginary) gravitating particles.79

Clarke then only needed to contrast Hermann’s conclusion that “the weight 
of bodies will be greater when they move upwards, and less when they move 
downwards”80 with the commonly accepted assumption of uniform gravity.

74  PM (21, schol.).  
75  Eduard Jan Dijkterhuis, The Mechanization of the World Picture, ed. Carry Dikshoorn 
(Oxford: Clarendon Press, 1961), 476. See PM (2).
76  “Pondus […] in corpore eodem majus prope terram, minus in coelis” (Philosophiae naturalis 
principia mathematica; PM, 5, def. 8; NP, 407, def. 8).
77  Papineau, “The Vis viva Controversy: Do Meanings Matter?,” 137.
78  Desaguliers, “An Account of Some Experiments,” 270. 
79  LC (C.5, footnote on § 93–95). Papineau, “The Vis viva Controversy: Do Meanings Matter?,” 
137 erroneously refers to p. 125 of Alexander’s edition, but it is the previous page (X, 124). 
80  LC (C.5, footnote on § 93–95).
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Of course, we can add that even if Leibniz really applied the assumption 
of non-uniform gravitation in his critique of Descartes, he would certainly 
do so according to the contemporary conception as indirectly, not directly 
proportional to the (square of) distance from its source. Strictly speaking, 
the assumption of a uniform gravitational field (unlike an electromagnetic 
field, such as the one of a capacitor) is just an approximation valid only at 
a  small scale,81 which is a  condition staunchly met by Leibniz’s example. 
“For,” Leibniz defended his procedure, “the maximum precise interval of the 
distance from the centre [of the Earth] in which it is difficult to approach the 
centre between those that are falling, cannot make a principal difference, 
which is why in equal times there occurs a compression of equal velocities.”82 
For completeness’s sake let us add that even if in motion perpendicular to the 
gravitational field’s lines of force, which Leibniz also considered,83 the curv-
ing of the Earth’s surface is omitted,84 it cannot be omitted here. However, 
the real point of Clarke’s reasoning did not concern gravitational uniformity 
as such, but rather motions across a uniform field, i.e., throws.

5. clarke’s objections

According to Clarke’s extensive and apparently invincible objection, it is 
first of all necessary to account for the time of the body’s fall, or rise:

The reason of his inconsistency […] was his computing […] the quantity of 
impulsive force, from the quantity of […] matter and of the space […], without 
considering the time of […] ascending. […] But in this supposition, Mr. Le-
ibnitz is greatly mistaken. Neither the Cartesians, nor any other philosophers 

81  Frank J. Blatt, Modern Physics (New York: McGraw-Hill, 1992), 51. Even the constant g 
itself is constant only with some approximation. If it were to generally hold that Ep = mg(const.)h, 
no space f lights would be possible since an infinite amount of energy would be needed to 
overcome the Earth’s field of gravity. In fact, it holds that G = 
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accepted at the time 77  that, strictly speaking, gravitation ought not to be 
regarded as uniform, so it was not difficult to find it, among others, in the 
Leibniz-inspired Jacob Hermann. For, as Desaguliers states, Hermann and 
others followed and defended Leibniz’s opinion accurately, so that any answer 
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bodies will be greater when they move upwards, and less when they move 
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Of course, we can add that even if Leibniz really applied the assumption 
of non-uniform gravitation in his critique of Descartes, he would certainly do 
so according to the contemporary conception as indirectly, not directly 
proportional to the (square of) distance from its source. Strictly speaking, the 
assumption of a uniform gravitational field (unlike an electromagnetic field, 
such as the one of a capacitor) is just an approximation valid only at a small 
scale, 81  which is a condition staunchly met by Leibniz’s example. “For,” 
Leibniz defended his procedure, “the maximum precise interval of the distance 
from the centre [of the Earth] in which it is difficult to approach the centre 

 
76 “Pondus … in corpore eodem majus prope terram, minus in coelis” (Philosophiae naturalis principia 
mathematica; PM, 5, def. 8; NP, 407, def. 8).  
77 Papineau, “The Vis viva Controversy: Do Meanings Matter?,” 137. 
78 Desaguliers, “An Account of Some Experiments,” 270.  
79  LC (C.5, footnote on § 93–95). Papineau, “The Vis viva Controversy: Do Meanings Matter?,” 137 
erroneously refers to p. 125 of Alexander’s edition, but it is the previous page (X, 124).  
80 LC (C.5, footnote on § 93–95). 
81 Frank J. Blatt, Modern Physics (New York: McGraw-Hill, 1992), 51. Even the constant g itself is constant 
only with some approximation. If it were to generally hold that Ep = mg(const.)h, no space flights would be 
possible since an infinite amount of energy would be needed to overcome the Earth’s field of gravity. In fact, it 
holds that G = 

kM
(R+h)2; where M and R stand for the mass and radius of the Earth, h for the body’s height above 

the Earth’s surface (Pavlík, “Vis viva & vis mortua,” 32). It is therefore no wonder that Leibniz preferred to 
avoid constants (ibid., 22), given that no truly universal constant had been discovered (Prigogine and Stengers, 
Order from Chaos, 203). 

; where M and R stand for 
the mass and radius of the Earth, h for the body’s height above the Earth’s surface (Pavlík, “Vis 
viva & vis mortua,” 32). It is therefore no wonder that Leibniz preferred to avoid constants 
(ibid., 22), given that no truly universal constant had been discovered (Prigogine and Stengers, 
Order from Chaos, 203).
82  “Nam ob maximam a centro (nempe telluris) distantiam exiguum intervallum, quo grave 
apud nos inter cadendum centro accedit, nullum facere potest discrimen notabile, ac proinde 
vel hinc orietur aequalibus temporibus aequalis celeritatum impression” (De causa gravitatis; 
GM, VI, 197). See also Specimen dynamicum (GM, VI, 244, I, § 15).  
83  Specimen dynamicum (GM, VI, 243, I, § 15).
84  Pavlík, “Vis viva & vis mortua,” 33, footnote 76.
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or mathematicians ever grant this, but in such cases only, where the times of 
ascent or descent are equal. […] (From whence by the way, it plainly follows, 
that if there be always the same impulsive force in the world, as Mr. Leibnitz 
affirms, there must be always the same motion in the world, contrary to what 
he affirms. But Mr. Leibnitz confounds these cases where the times are equal 
with the cases where the times are unequal: and chiefly that of bodies rising and 
falling at the ends of the unequal arms of a balance [… is by him confounded 
with that of bodies falling downwards and thrown upwards, without allowing 
for the inequality of the time.85 

In this way, Leibniz allegedly disregarded one of the  factors of force, 
namely time. However, seeing that the motion of a body thrown after re-
bounding vertically upwards is uniformly decelerated, it is (omitting dissi-
pation) the same uniformly accelerated motion in the opposite direction and 
its time of duration is therefore (after subtracting the impressed velocity) 
the same. If the magnitude of the impulsive force were to be proportional to 
time, then – in contradiction to Clarke’s explanation86 – a body thrown with 
lesser force (and therefore moving with lesser velocity, i.e., in a longer span 
of time), would fall deeper than a body thrown with greater force.

And regarding the claim “that although a body at the end of the unequal 
arms of a balance, by doubling its velocity, acquires only a double impulsive 
force, yet, by being thrown upwards with the same doubled velocity, it ac-
quires a quadruple impulsive force,”87 it needs to be added that in the case 
of the motion of a weight decelerated by a counter-weight it is no longer an 
instance of free fall. Thus, although it holds that “equal bodies with equal 
velocities cannot have unequal impulsive forces,”88 in this case the velocities 
are not equal. But none of Leibniz’s  texts to which Clarke directly refers89 
mentions balance scales,90 whether equal-arm ones or non-equal-arm ones.

85  LC (C.5, footnote on § 93–95). See also his later A Letter from the Rev. Dr. Samuel Clarke to 
Mr. Benjamin Hoadly (WC, IV, 738f.).
86  A Letter from the Rev. Dr. Samuel Clarke to Mr. Benjamin Hoadly (WC, IV, 739f.).
87  “Affirming, that although a body at the end of the unequal arms of a balance, by doubling 
its velocity, acquires only a double impulsive force, yet, by being thrown upwards with the 
same doubled velocity, it acquires a quadruple impulsive force” (LC; C.5, footnote on § 93–95).
88  LC (C.5, footnote on § 93–95).
89  Brevis demonstratio (GM, VI, 118); De causa gravitatis (GM, VI, 199); De legibus naturae 
(GM, VI, 204); Specimen dynamicum (GM, VI, 244n.).
90  Palkoska’s translation (PA, 166 and 167) – probably under the influence of Clarke’s inter-
pretation (see A  Letter from the Rev. Dr.  Samuel Clarke to Mr. Benjamin Hoadly; WC, IV, 
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A  similar confusion also gave rise to Clarke’s claim that in Leibniz’s 
conception “this body, with one and the same degree of velocity, would have 
twice as much force when thrown upwards, as when thrown horizontally: 
which is a plain contradiction.”91 But seeing that the individual throws de 
facto differ only in their initial velocity,92 both cases would again involve 
a uniformly decelerated, or accelerated, motion [v = v0 ± √(2gh)]93 with a ki-
netic energy of ½ mv2, or mv2 in Leibniz’s conception. And finally, the claim 
that at the moment the body is launched, its kinetic energy is still null (as it is 
stored in potential energy yet) certainly does not mean that the body would 
never drop, as Newton’s observations94 were elaborated by Clarke:

Therefore if the action of gravity […] be supposed in the middle of the first 
part of time, to be of one degree; it will, in the middle of the second, third, and 
fourth parts of time, be of three, five, and seven degrees, and so on; […] and, by 
consequence, in the beginning of the time it will be none at all; and so the body, 
for want of gravity, will not fall down.95 

Analogically, the weight of the body will not change even when it is thrown 
upwards, despite Clarke’s conviction: “When a  body is thrown upwards, 
its gravity will decrease as its velocity decreases, and cease when the body 
ceases to ascend: and then for want of gravity, it will rest in the air, and fall 
down no more.”96 But, in fact, its original impressed kinetic energy will just 
be exhausted, after which the opposite acceleration, bestowed by gravitation, 
will prevail.

739n.) – speaks of oscillating balances, rather than of the unequal arms of a  balance scale  
(i.e., of differing moments of force).
91  LC (C.5, footnote on § 93–95).
92  Or: “tangible bodies acquire the same velocities, falling perpendicularly from the same 
height, whether their trajectory is perpendicular or inclined” [“Gravia easdem acquirunt ce-
leritates, si ex eadem altitudine perpendiculari descendant quacunque licet via perpendiculari 
vel inclinata” (Dynamica de potentia; GM, VI, 455, II, I, prop. 33)].
93  See Jiří Wagner, Příklady z fyziky (Liberec: Vysoká škola strojní a textilní, 1984), 10. 
94  Iltys, “The Leibnizian-Newtonian Debates,” 373. See Koyré and Cohen, “Newton & The 
Leibniz-Clarke Correspondence,” 121. 
95  LC (C.5, footnote on § 93–95). 
96  Ibid. 
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6. conclusion

The conclusions of this analysis are all the more surprising, given that Clar-
ke’s note accurately reproduces the observations of Newton himself. And 
although repetition of experiments was not a  method by which recruited 
the converts to either of the camps,97 Palkoska used the extensive note on 
paragraphs C.5.93–95, which points out the internal contradictions of Leib-
niz’s own theory, together with the reference to the “particular experimental 
proofs of the stated assumptions in  Newton’s Optics,”98 as an instructive 
example of the difference “between the Newtonian experimental and Le-
ibniz’s hypothetical approach to the relationship between metaphysical and 
empirical issues.”99

Such assessment is supported not only by  the correspondence with 
Clarke, but also by some apparently pro-Newtonian 18th-century testimo-
nia.100 The practice of attributing to Newton “opinions he did not have and 
words pronounced by others”101 is widespread.102 One of the ideas frequently 
attributed to Newton as being his original is also the emphasis  placed on ex-
periment.103 Unlike Newton (who described tidal phenomena possibly with-
out ever seeing the sea104 and whose most famous experiment with a bucket is 

97  Iltys, “The Leibnizian-Newtonian Debates,” 376.
98  I.e., apparently the cohesion or friction of liquids and the weakness of solid bodies’ elasticity.
99  “Mezi newtonovským ‘zkušenostním (experimental)’ a  Leibnizovým ‘hypotetickým’ pří-
stu pem ke vztahu mezi metafyzickými a empirickými otázkami” (Palkoska, “Úvod,” 46). Also 
Perl, “Physics and Metaphysics in Newton, Leibniz, and Clarke,” 526.
100  Karin Verelst, “Leibniz vs. Newton: Intransparency vs. Inconsistency,” Synthese 191,  
no. 13 (2014): 22.   
101  „Názory, které neměl, a  slova, jež za  něj vyslovili jiní.” [Ivan Saxl, “Isaac Newton: 
Alchymista, filosof, heretik,” in Matematika v  proměnách věků. Vol. 6, edited by Jindřich 
Bečvář (Prague: Matfyzpress, 2010), 7].
102  Also Nicholas Huggett, “Motion in Leibniz’s Physics and Metaphysics,” in True Motion, 2019 
[in print], accessed December 15, 2023.
103  Saxl, “Isaac Newton,” 34; Van Besouw, “The Wedge and the Vis Viva Controversy,” 133.
104  At least according to Edward Dolnick, The Clockwork Universe (New York: HarperCollins 
Publishers, 2011), 162, and Mark Brake, The Science of the Big Bang Theory: What America’s 
Favorite Sitcom Can Teach You about Physics, Flags, and the Idiosyncrasies of Scientists! (New 
York: Skyhorse Publishing, 2019), 196.
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entirely105 inconclusive),106 Leibniz allegedly was not an outstanding observer 
of nature (he was heavily short-sighted),107 so that he apparently must have 
made all the sketches and other observations from the Protogaea108 up, and 

105  More precisely, it does not imply the existence of absolute space. Apparently, Newton also 
tried to forcibly bring an experiment into accord with his own theory [William Newman, 
“Geochemical Concepts in Isaac Newton’s Early Alchemy,” in The Revolution in Geology 
from the Renaissance to the Enlightenment, ed. Gary Rosenberg (Boulder: Geological Society 
of America, 2009), 47] in connection with Boyle’s reintegration of nitrogen (see Of Natures 
Obvious Laws & Processes in Vegetation; IU, fol. 2r–2v). Finally, even his proof of the four basic 
principles of geometric optics contradicted experience (Július Krempaský, Fyzika: Príručka 
pre vysoké školy technické (Prague: SNTL, 1987), 306.
106  Herman Erlichson, “The Leibniz-Clarke Controversy: Absolute versus Relative Space and 
Time,” American Journal of Physics 35, no. 2 (1967): 91, 93; Michael Friedman, Foundations 
of Space-Time Theories: Relativistic Physics and Philosophy of Science (Princeton: Princeton 
University Press, 1983), 122, 275; John Randolph Lucas, Space, Time and Causality: An Essay 
in Natural Philosophy (Oxford: Clarendon Press, 1984), 133; Julian Barbour, The Discovery 
of Dynamics: Absolute or Relative Motion?: A  Study from a  Machian Point of View of the 
Discovery and the Structure of Dynamical Theories (Cambridge: Cambridge University Press, 
1989), 670f.; Richard Arthur, “Space and Relativity in Newton and Leibniz,” The British 
Journal for the Philosophy of Science 45, no. 1 (1994): 222; Howard Stein, “Some Philosophical 
Prehistory of General Relativity,” in Foundations of Space-Time Theories, eds. John S. Earman, 
Clark N.  Glymour, and John J. Stachel (Mineapolis: University of Minnesota Press, 1977), 
15; Robert Disalle, Understanding Space-Time: The Philosophical Development of Physics 
from Newton to Einstein (Cambridge: Cambridge University Press, 2006), 14; Ori Belkind, 
“Newton’s Conceptual Argument for Absolute Space,” International Studies in the Philosophy 
of Science 21, no. 3 (2007): 274; Marco Giovanelli, “Leibniz Equivalence: On Leibniz’s (Bad) 
Influence on the Logical Empiricist Interpretation of General Relativity,” PhilSci archive, ac-
cessed December 15, 2023; Herbert Pfister and Markus King, Inertia and Gravitation: The 
Fundamental Nature and Structure of Space-Time (Dodrecht: Springer, 2015), 5; Hans Poser, 
Leibniz’ Philosophie: Über die Einheit von Metaphysik und Wissenschaft (Hamburg: Felix 
Meiner Verlag, 2016), 335; Kateřina Lochmanová, “Analysis situs v kontextu Leibnizovy ko-
respondence s  Clarkem,” PhD diss., University of Ostrava, 2021, 83; also Letter to Burnett 
of 8/18 May 1697 (GP, III, 205); Piéces et Fragments concernant la Question de l’Existence et de 
la Perceptibilité du ‘Mouvement Absolu’ (HO, XVI, 232, no. 8); Huygens’s Letter to Leibniz of 
24 August 1694 (GM, II, 192); Letter to Huygens of 4/14 September 1694 (GM, II, 199). 
107  Jürgen Jost, Leibniz und die moderne Naturwissenschaft (Berlin: Springer, 2019), 14; John 
T.  Merz, Leibniz (London: William Blackwood and Sons, 1902), 126; John Mackie, Life of 
Godfrey William von Leibnitz, 271, 275.
108  See Toshihiro Yamada, “Stenonian Revolution or Leibnizian Revival?: Constructing 
Geo-History in the Seventeenth Century,” Historia Scientiarum 13, no. 2 (2003): 88f.; Carl 
Ch. Beringer, Geschichte der Geologie und des Geologischen Weltbildes (Stuttgart: Ferdinand 
Enke Verlag, 1954), 27; Dale Jacquette, “Leibniz’s Empirical, Not Empiricist Methodology,” 
in Tercentery Essays on the Philosophy and Science of Leibniz, eds. Lloyd Strickland, Erik 
Vynckier, and Julia Weckend (Cham: Springer, 2017), 195.
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he was also not a successful experimenter,109 despite his immense interest in 
all kinds of empirical discoveries, which he took seriously.110 

Whether Leibniz was an empiricist or not, we can conclude with  Jost 
that his systematic thought brought him to physical insights which are com-
parable in depth and significance with those reached by naturalists deriving 
from observations and experiment.111 Leibniz’s utmost interest never was 
to refute those insights, merely to perfect them. For, as also contemporary 
physicists confirm, the more minutely we examine nature, the more evidence 
we obtain regarding the profound order, “that underlies the complications 
and confusions of experience.”112

Therefore “the principles of mechanics remain true and also those of 
statics which depend on them and concern the equilibrium of heavy bodies. 
Also the rules of motion which the excellent men, Huygens, Wrenn, Mariotte, 
and Newton, have established by experiments remain true. These truths dis-
covered in experience are not attacked by me, but I rather find their origin 
in our principle.”113 How absurd it thus sounds when Mackie asserts that no 
one but Leibniz was so unwilling to recognize the high merits of Newton’s 
Principia, and no one but he assailed their influence on the continent.114 
However, the same certainly does not hold of the laws of motion formulated 
by Descartes, who allegedly would have been able to lay the foundations of 
real physics, had he manifested greater patience in describing the sensible 
and lesser weakness for describing the invisible.115 Anyway, as the Second 
Law of Thermodynamics demonstrates, both would be necessary.

109  Although David R. Oldroyd [“Early Geology in Focus,” Metascience, no. 21 (2012): 571] 
admires Leibniz’s “‘curious’ experiment to reproduce the impression of a spider,” as confus-
ingly described by Rhoda Rapapport [“Leibniz on Geology: A Newly Discovered Text,” Studia 
Leibnitiana 29, no. 1 (1997): 8], Leibniz in fact referred to a common goldsmith praxis in the 
respective passage (Protogaea; P, 48f., § 18), rather than to his own experiment.
110  Jost, Leibniz und die moderne Naturwissenschaft, 14.
111  Ibid., 14.
112  Arthur Beiser, Perspectives of Modern Physics (New York: McGraw-Hill, 1969), 592.
113  “Imo verae etiam manent regulae motuum quas viri insignes, Hugenius, Wrennus, 
Mariottus et Newtonus experimentis confirmatae tradidere. Tantum abest, ut ea usu com-
perta veritates a me impugnerent utius fons earum in principio nostro aperritur” (LH, XXXV, 
9, 7, Bl. 11v). 
114  Mackie, Life of Godfrey William von Leibnitz, 104f.
115  Untitled (GP, IV, 302, 309); De secretione animali (D, II, II, 90).
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